
Architecture and publication patterns

Technical options for OCDS 
implementation



Architecture



Direct publication from live systems

Live System

Datastore
(non-OCDS)

API

OCDS Conversion

users

3rd party 
systems

OCDS data

non-OCDS data

API call / DB query



Separate OCDS datastore - pull and convert

Middleware

OCDS 
Conversion

Datastore
(OCDS)

API

users

3rd party 
systems

Live System

Datastore
(non-OCDS)

pull

OCDS data

non-OCDS data

API call / DB query



Separate OCDS datastore - pull and convert

Middleware

OCDS 
Conversion

Datastore
(OCDS)

API

users

3rd party 
systems

Live System

Datastore
(non-OCDS)

pull
Live System

Datastore
(non-OCDS)

OCDS data

non-OCDS data

API call / DB query



Separate OCDS datastore - convert and push

Live System Middleware

OCDS 
Conversion

Datastore
(OCDS)

API

users

3rd party 
systems

Datastore
(non-OCDS)

push

OCDS data

non-OCDS data

API call / DB query



Separate OCDS datastore - manual import

Middleware

OCDS 
Conversion

Datastore
(OCDS)

API

user

3rd party 
system

Live System

Datastore
(non-OCDS)

Flat file 
export



Publication patterns



JSON CSV / ExcelDocuments

Individual releases

API

Bulk downloads

Bulk download

Segmented data: 
month, year, 

department etc.

Direct URLs

Long-term archival

Documents and data



Skills and user needs

Working with 
spreadsheets, e.g. 

MS Excel

Working with 
databases, e.g. 

SQL

Working with 
JSON directly, 

e.g. Python

It’s important to provide data in 
structured JSON format for tool 
developers and advanced users.

But more users have the skills 
to work with flattened (tabular) 
data, so providing CSVs and 
spreadsheets is important too.



Serialization

Structured
(JSON)

Flattened
(CSV/Excel)



ocid id tender/id tender/value/amount contracts/0/id contracts/0/value/amount

ocid id tender/id tender/value/amount

ocid id contracts/0/id contracts/0/value/amount

Simple data can be presented in a single sheet

Complex data can be presented in a multiple sheets

Spreadsheets



Individual files are important for developers and tools:

● Persistent URIs for individual releases and records

Bulk files make your data accessible to a wider range of users. 
Consider:

● Periodic generation and segmentation, by date, release ID etc.

● Dynamic generation: streaming the latest database contents

Static files



APIs

● Individual releases and 
records at stable URLs

● All releases and records 
ordered by date

● Search endpoints

● Aggregation

● Don’t forget documents

resource:
API 

specification

informed by user needs



Change history



Releases:
Updates on individual 

events in a process, e.g:

● Tender notice
● Contract award

● Contract 
amendment

Records:
Current state of 

the whole 
process.

+
Links to individual 

releases

Change history: releases and records



We recommend publishing a new release of data whenever 
anything changes in the contracting process.

Worked example

15th Jan
Tender issued

28th Feb
Award announced

15th March
Contract signed

Option 1: Publish backward looking data after contract is signed;
Option 2: Publish a single record, updating every time things change;
Option 3: Publish individual releases as each event happens, along with an 
OCDS record to compile a snapshot of the whole process.

releases and records


